skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barnett, Jacob R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseThe scents of volatile organic compounds (VOCs) are an important component of ripe fleshy fruit attractiveness, yet their variation across closely related wild species is poorly understood. Phylogenetic patterns in these compounds and their biosynthetic pathways offer insight into the evolutionary drivers of fruit diversity, including whether scent can communicate an honest signal of nutrient content to animal dispersers. We assessed ripe fruit VOC content across the tomato clade (Solanumsect.Lycopersicon), with implications for crop improvement since these compounds are key components of tomato flavor. MethodsWe analyzed ripe fruit volatiles from 13 species of wild tomato grown in a common garden. Interspecific variations in 66 compounds and their biosynthetic pathways were assessed in 32 accessions, and an accession‐level phylogeny was constructed to account for relatedness. ResultsWild tomato species can be differentiated by their VOCs, withSolanum pennelliinotably distinct. Phylogenetic conservatism exists to a limited extent. Major cladewide patterns corresponded to divergence of the five brightly colored‐fruited species from the nine green‐fruited species, particularly for nitrogen‐containing compounds (higher in colored‐fruited) and esters (higher in green‐fruited), the latter appearing to signal a sugar reward. ConclusionsWe established a framework for fruit scent evolution studies in a crop wild relative system, showing that each species in the tomato clade has a unique VOC profile. Differences between color groups align with fruit syndromes that could be driven by selection from frugivores. The evolution of colored fruits was accompanied by changes in biosynthetic pathways for esters and nitrogen‐containing compounds, volatiles important to tomato flavor. 
    more » « less